THE HASSE-WEIL ZETA FUNCTION FOR GROUPS

GRK RETREAT 6TH-8TH OCTOBER 2025

MAX GHEORGHIU HHU DÜSSELDORF

HASSE-WEIL ZETA FUNCTION FOR ALGEBRAIC VARIETIES

IDEA

The Hasse–Weil zeta function $\zeta_V(s)$ for an algebraic variety V over an algebraic number field K is a tool to count the number of points on it after reducing at each prime number p.

HASSE-WEIL ZETA FUNCTION FOR ALGEBRAIC VARIETIES

IDEA

The Hasse–Weil zeta function $\zeta_V(s)$ for an algebraic variety V over an algebraic number field K is a tool to count the number of points on it after reducing at each prime number p.

HASSE-WEIL ZETA FUNCTION (ALGEBRAIC VARIETIES)

The variety V is defined over a set of equations. For almost all primes p one can take the equations modulo p and define

 $N_j := \{ \text{solutions of equations in the finite field } \mathbb{F}_{p^j} \}$.

HASSE-WEIL ZETA FUNCTION FOR ALGEBRAIC VARIETIES

HASSE-WEIL ZETA FUNCTION (ALGEBRAIC VARIETIES)

The variety V is defined over a set of equations. For almost all primes p one can take the equations modulo p and define

$$N_j := \{ \text{solutions of equations in } \mathbb{F}_{p^j} \}$$
 .

The Hasse–Weil zeta function of V is defined as

$$\zeta_V:U\subseteq\mathbb{C} o\mathbb{C},\quad s\mapsto\prod_{p \text{ prime}}\zeta_{V,p}(s)$$

where

$$\zeta_{V,p}(s) := \exp\left(\sum_{i=j}^{\infty} \frac{N_j}{j} p^{-sj}\right).$$

EXAMPLE

The Hasse–Weil zeta function of V is defined as

$$\zeta_V(s) := \prod_{p \text{ prime}} \zeta_{V,p}(s) \quad \text{where} \quad \zeta_{V,p}(s) := \exp\left(\sum_{j=1}^{\infty} \frac{N_j}{j} p^{-sj}\right).$$

EXAMPLE

The Hasse–Weil zeta function of V is defined as

$$\zeta_V(s) := \prod_{p \text{ prime}} \zeta_{V,p}(s) \quad \text{where} \quad \zeta_{V,p}(s) := \exp\left(\sum_{j=1}^\infty \frac{N_j}{j} p^{-sj}\right).$$

RIEMANN ZETA FUNCTION

If $V = \{*\}$ is a point, then

$$\zeta_{V,p}(s) = \frac{1}{1 - p^{-s}}$$

and thus, its Hasse-Weil zeta function is the Riemann zeta function

$$\zeta_V(s) = \zeta(s) = \sum_{i=1}^{\infty} \frac{1}{n^s}.$$

CONJECTURES

HASSE-WEIL CONJECTURE

Any Hasse–Weil zeta function $\zeta_V(s)$ extends meromorphically to the entire complex plane $\mathbb C$ and satisfies a functional equation similar to that of the Riemann zeta function $\zeta(s)$.

CONJECTURES

HASSE-WEIL CONJECTURE

Any Hasse–Weil zeta function $\zeta_V(s)$ extends meromorphically to the entire complex plane $\mathbb C$ and satisfies a functional equation similar to that of the Riemann zeta function $\zeta(s)$.

MILLENIUM PROBLEM: BIRCH AND SWINNERTON-DYER CONJECTURE

- The number of infinite-order generators for an elliptic curve E (Prüfer rank) is the order of the zero of the Hasse–Weil zeta function $\zeta_E(s)$ at s=1 and
- ...

HASSE-WEIL ZETA FUNCTION FOR GROUPS

G. Corob Cook, S. Kionke and M. Vannacci introduced Hasse–Weil zeta functions for groups in 2024.

IDEA

The Hasse–Weil zeta function $\zeta_G(s)$ for a group G is a tool to count "nice" representations $G \to \mathrm{Gl}_n(F_{p^j})$ over all finite fields \mathbb{F}_{p^j} .

HASSE-WEIL ZETA FUNCTION FOR GROUPS

G. Corob Cook, S. Kionke and M. Vannacci introduced Hasse–Weil zeta functions for groups in 2024.

IDEA

The Hasse–Weil zeta function $\zeta_G(s)$ for a group G is a tool to count "nice" representations $G \to \mathrm{Gl}_n(F_{p^j})$ over all finite fields \mathbb{F}_{p^j} .

HASSE-WEIL ZETA FUNCTION (GROUPS)

For $n \ge 1$ let

 $r_n(G, \mathbb{F}_{p^j}) := \{ \text{absolutely irreducible representations } G o \mathrm{Gl}_n(\mathbb{F}_{p^j}) \}$.

HASSE-WEIL ZETA FUNCTION FOR GROUPS

HASSE-WEIL ZETA FUNCTION (GROUPS)

For n > 1 let

$$r_n(G, \mathbb{F}_{p^j}) := \{ \text{absolutely irreducible representations } G \to \mathrm{Gl}_n(\mathbb{F}_{p^j}) \}$$
.

The Hasse–Weil zeta function of G is defined as

$$\zeta_G:U\subseteq\mathbb{C} o\mathbb{C},\quad s\mapsto\prod_{p ext{ prime}}\zeta_{G,p}(s)$$

where

$$\zeta_{G,p}(s) := \exp\left(\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \frac{r_n(G, \mathbb{F}_{p^j})}{j} p^{-sjn} \underbrace{|\mathbb{P}^{n-1}(\mathbb{F}_{p^j})|}_{\text{scaling factor}}\right).$$

EXAMPLES

RIEMANN ZETA FUNCTION

If $G = \{1\}$ is the trivial group, then its Hasse–Weil zeta function is

$$\zeta_G(s) = \zeta(s) = \sum_{i=1}^{\infty} \frac{1}{n^s}.$$

RIEMANN ZETA FUNCTION

If $G = \{1\}$ is the trivial group, then its Hasse–Weil zeta function is

$$\zeta_G(s) = \zeta(s) = \sum_{i=1}^{\infty} \frac{1}{n^s}.$$

Hasse–Weil zeta function for \mathbb{Z}

If $G = \mathbb{Z}$, then it has $p^j - 1$ one-dimensional absolutely irreducible representations over \mathbb{F}_{p^j} . Its Hasse–Weil zeta function is

$$\begin{split} \zeta_{\mathbb{Z}}(s) &= \prod_{p \text{ prime}} \exp \left(\sum_{j=1}^{\infty} \frac{p^j - 1}{j} p^{-sj} \right) = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^{s-1}} \right)^{-1} \left(1 - \frac{1}{p^s} \right) \\ &= \frac{\zeta(s-1)}{\zeta(s)} \,. \end{split}$$

PROFINITE GROUPS AND COMPLETIONS

- A profinite group is a topological group that can be assembled from finite groups.
- The profinite completion \widehat{G} of a group G is the smallest profinite group in which G can be embedded. It is assembled from the finite quotients of G.

PROFINITE GROUPS AND COMPLETIONS

- A profinite group is a topological group that can be assembled from finite groups.
- The profinite completion \widehat{G} of a group G is the smallest profinite group in which G can be embedded. It is assembled from the finite quotients of G.

Note

Any representation $G \to \mathrm{Gl}_n(\mathbb{F}_{p^j})$ factors through a finite quotient.

PROFINITE GROUPS AND COMPLETIONS

- A profinite group is a topological group that can be assembled from finite groups.
- The profinite completion \widehat{G} of a group G is the smallest profinite group in which G can be embedded. It is assembled from the finite quotients of G.

Note

Any representation $G \to Gl_n(\mathbb{F}_{p^j})$ factors through a finite quotient.

ZETA FUNCTIONS VIA PROFINITE GROUPS

The Hasse–Weil zeta function $\zeta_G(s)$ of a group G can be defined via its profinite completion \widehat{G} . Hasse–Weil zeta functions can be defined for every profinite group.

ZETA FUNCTIONS VIA PROFINITE GROUPS

The Hasse–Weil zeta function $\zeta_G(s)$ of a group G can be defined via its profinite completion \widehat{G} . Hasse–Weil zeta functions can be defined for every profinite group.

ZETA FUNCTIONS VIA PROFINITE GROUPS

The Hasse–Weil zeta function $\zeta_G(s)$ of a group G can be defined via its profinite completion \widehat{G} . Hasse–Weil zeta functions can be defined for every profinite group.

THEOREM (COROB COOK, KIONKE, VANNACCI, '24)

The reciprocal value $\zeta_G(k)^{-1}$ at a sufficiently large integer k coincides with the probability that k random elements generate the completed group ring $\widehat{\mathbb{Z}}[[G]]$ of a profinite group G.

Questions?