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HASSE-WEIL ZETA FUNCTION FOR ALGEBRAIC VARIETIES

IDEA

The Hasse—Weil zeta function ¢y(s) for an algebraic variety V over
an algebraic number field K is a tool to count the number of points on
it after reducing at each prime number p.
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HASSE-WEIL ZETA FUNCTION (ALGEBRAIC VARIETIES)

The variety V is defined over a set of equations. For almost all primes
p one can take the equations modulo p and define

N; := {solutions of equations in the finite field F,;} .
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HASSE-WEIL ZETA FUNCTION (ALGEBRAIC VARIETIES)

The variety V is defined over a set of equations. For almost all primes
p one can take the equations modulo p and define

N; := {solutions of equations in F;} .
The Hasse—Weil zeta function of V is defined as

¢v:ucc—c, se ] cvals)

p prime

where

Cvpls) = exp< Tfp—81> .
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EXAMPLE

The Hasse—Weil zeta function of V is defined as

Cv(s) = H Cvp(s) where (yp(s):= exP(Z %l)—s/) )

p prime
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EXAMPLE

The Hasse—Weil zeta function of V is defined as

H Cvp(s) where (v p(s —exp(Z p—5/>

p prime

RIEMANN ZETA FUNCTION

If V = {«} is a point, then

1
1—p=s
and thus, its Hasse—Weil zeta function is the Riemann zeta function

=1
Cv( ) =D

j=1

44-‘

Cv,p(8) =



CONJECTURES

HASSE-WEIL CONJECTURE

Any Hasse—Weil zeta function ¢y(s) extends meromorphically to the
entire complex plane C and satisfies a functional equation similar to
that of the Riemann zeta function ((s).
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Any Hasse—Weil zeta function ¢y(s) extends meromorphically to the
entire complex plane C and satisfies a functional equation similar to
that of the Riemann zeta function ¢(s).

MILLENIUM PROBLEM: BIRCH AND SWINNERTON-DYER
CONJECTURE
e The number of infinite-order generators for an elliptic curve E

(Prafer rank) is the order of the zero of the Hasse—Weil zeta
function ¢g(s) at s =1 and
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HASSE-WEIL ZETA FUNCTION FOR GROUPS

G.Corob Cook, S.Kionke and M. Vannacci introduced Hasse—Weil
zeta functions for groups in 2024.

IDEA

The Hasse—Weil zeta function (g(s) for a group G is a tool to count
“nice” representations G — Gl (F,,) over all finite fields Fp;.
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Forn>1let
(G, Fp;) := {absolutely irreducible representations G — Gl,(Fp))} -
The Hasse—Weil zeta function of G is defined as

(g:UcC—C, s [] ¢epls)

p prime

where

¢a,p(S) = exp(zzrn Fpr) P~ P (F )

j=1 n=

-

scaling factor
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EXAMPLES

RIEMANN ZETA FUNCTION

If G = {1} is the trivial group, then its Hasse—Weil zeta function is

Ca(s) = => % :

i=1




EXAMPLES

RIEMANN ZETA FUNCTION

If G = {1} is the trivial group, then its Hasse—Weil zeta function is
Cals)=¢(s) =) —.

1
n
=il

HASSE-WEIL ZETA FUNCTION FOR Z

If G = Z, then it has p/ — 1 one-dimensional absolutely irreducible
representations over F;. Its Hasse—-Weil zeta function is

a0 IT en( S 271%) - 11 (1-5) (- 3)

p prime p prime

(s—=1)
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ZETA FUNCTIONS VIA PROFINITE GROUPS

PROFINITE GROUPS AND COMPLETIONS

@ A profinite group is a topological group that can be assembled
from finite groups.

@ The profinite completion Gofa group G is the smallest profinite
group in which G can be embedded. It is assembled from the
finite quotients of G.
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ZETA FUNCTIONS VIA PROFINITE GROUPS

The Hasse—Weil zeta function (g(s) of a group G can be defined via

its profinite completion G. Hasse—Weil zeta functions can be defined
for every profinite group.
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ZETA FUNCTIONS VIA PROFINITE GROUPS

The Hasse—Weil zeta function (g(s) of a group G can be defined via
its profinite completion G. Hasse—Weil zeta functions can be defined
for every profinite group.

THEOREM (COROB COOK, KIONKE, VANNACCI, '24)

The reciprocal value (g(k)~" at a sufficiently large integer k coincides
with the probability that k random elements generate the completed
group ring Z[[G]] of a profinite group G.
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