Rationalité à la Igusa Definable sets in \mathbb{Q}_p Blaise Boissonneau Immi Halupczok Vicente Monreal HHU Düsseldorf October 8, 2025 # First-order logic (in short) Write a formula using - logical symbols: = () $\land \lor \neg \to$ - variables: v_1 v_2 . . . or x y z . . . , quantifiers: ∀ ∃ - symbols from a fixed language, example: + < 0 $$\forall x (y < x \rightarrow \neg y = x)$$ $$\exists y \ x = y + y$$ #### Definable sets Fix a language. Consider a first-order formula $\varphi(\overline{x})$ in this language, where $\overline{x} = (x_1, \dots, x_n)$ are the free variables of φ . Fix a first-order structure M in this language, that is, a set equipped with interpretations of symbols of my language. The set $\varphi(M) := \left\{ \overline{a} \in M^{|\overline{x}|} \,\middle|\, \varphi(\overline{a}) \text{ is true in } M \right\}$ is a definable set. Example: $$\mathcal{L}_{rings} = \{0, 1, +, -, \times\}, \ \varphi(x) \colon \exists y(x = y^2)$$ $$\varphi(\mathbb{C}) = \mathbb{C}$$ $$\varphi(\mathbb{R}) = \mathbb{R}_{\geqslant 0}$$ $$\varphi(\mathbb{Q}_p) = \text{see Immi's talk}$$ $$\varphi(\mathbb{Z}) = \{0, 1, 4, 9, \ldots\}$$ ### Geometry of definable sets Fix a language \mathcal{L} and a structure M. Let D be the collection of definable sets in M. Then: - Singletons are in D, graphs of relations and of functions of the language are in D, including the diagonal (graph of equality). - D is closed under permutations of coordinates, finite intersections, finite unions, complement, cartesian product. - *D* is closed under projection. In fact, D is the smallest such. If $\mathcal{L} = \mathcal{L}_{ring}$, then D contains exactly the boolean combinations of algebraic varieties (the constructible sets) and their projections. # Stop projecting Fix a language \mathcal{L} and a structure M. ${\it M}$ 'eliminates quantifiers': every formula is equivalent to a formula without quantifiers. Equivalently: definable sets are constructible. #### Classical results: - You just need to eliminate one quantifier. - You can do things 'structurally': $\varphi(\overline{x})$ is equivalent to a quantifier-free formula iff anytime $N \equiv M$, anytime $\overline{a} \in M$ and $\overline{b} \in N$ are such that $\langle \overline{a} \rangle \simeq \langle \overline{b} \rangle$, then $M \vDash \varphi(\overline{a})$ iff $N \vDash \varphi(\overline{b})$. - This is a notion relative to a language. You can always move to a larger language where M eliminates quantifiers. #### Definable sets in \mathbb{C} Tarski: \mathbb{C} eliminates quantifiers in \mathcal{L}_{rings} . #### Example: $$\exists y(x_ny^n+\cdots+x_0=0) \leftrightarrow x_0=0 \lor x_1\neq 0 \lor \cdots \lor x_n\neq 0.$$ #### Consequences: - Chevalley's theorem: projections of constructible sets are constructible. - Nullstellensatz: Any proper ideal of $\mathbb{C}[X_1,\ldots,X_n]$ has a common 0. - Strong minimality: Definable sets in dimension 1 are finite or cofinite. #### Definable sets in $\mathbb R$ The set of squares in \mathbb{R} (also known as $\mathbb{R}_{\geqslant 0}$) is definable but not constructible. Hence, \mathbb{R} does not eliminate quantifiers in \mathcal{L}_{rings} . Tarski again: \mathbb{R} eliminates quantifiers in $\mathcal{L}_{\textit{orings}} = \{0, 1, +, -\times, <\}.$ Example: $$\exists y(x_2y^2 + x_1y + x_0 = 0) \leftrightarrow (x_1^2 - 4x_2x_0 \ge 0)$$. #### Consequences: – Hilbert 17: $f \in \mathbb{R}[X_1,\ldots,X_n]$ is a sum of squares iff $\forall a_1\ldots \forall a_n,\ f(a_1,\ldots,a_n)\geqslant 0.$ o-minimality: Definable sets in dimension 1 are finite unions of intervals and points. ## Definable sets in \mathbb{Q}_p The set of squares in \mathbb{Q}_p is definable but not constructible. Hence, \mathbb{Q}_p does not eliminate quantifiers in \mathcal{L}_{rings} . The same is true for the set of cubes or of n-power. Macintyre: \mathbb{Q}_p eliminates quantifiers in $\mathcal{L}_{Mac} = \{0, 1, +, -\times, (P_n)_{n \geq 2}\}$, where $P_n(x)$ holds iff $\exists y (x = y^n)$. Note: \mathbb{Z}_p is a definable set: $x \in \mathbb{Z}_p$ iff $\exists y (1 + px^2 = y^2)$. We then have $\mathbb{Z} \simeq \mathbb{Q}_p^\times/\mathbb{Z}_p^\times$, that is, \mathbb{Z} is 'interpretable' in \mathbb{Q}_p . #### Consequences: - Definable sets in dimension 1 are finite (positive) Boolean combinations of P_n and points. - Rationality results as explained by Immi: if $X \subseteq \mathbb{Z}_p^d \times \mathbb{Z}$ is definable, then $\sum_{m \geq 0} \mu(X_m) T^m$ is a rational function. - \mathbb{Q}_p is model-complete and decidable.