Rationalité à la Igusa

Definable sets in \mathbb{Q}_p

Blaise Boissonneau Immi Halupczok Vicente Monreal

HHU Düsseldorf

October 8, 2025

First-order logic (in short)

Write a formula using

- logical symbols: = () $\land \lor \neg \to$
- variables: v_1 v_2 . . . or x y z . . . , quantifiers: ∀ ∃
- symbols from a fixed language, example: + < 0

$$\forall x (y < x \rightarrow \neg y = x)$$

$$\exists y \ x = y + y$$

Definable sets

Fix a language. Consider a first-order formula $\varphi(\overline{x})$ in this language, where $\overline{x} = (x_1, \dots, x_n)$ are the free variables of φ .

Fix a first-order structure M in this language, that is, a set equipped with interpretations of symbols of my language.

The set $\varphi(M) := \left\{ \overline{a} \in M^{|\overline{x}|} \,\middle|\, \varphi(\overline{a}) \text{ is true in } M \right\}$ is a definable set.

Example:
$$\mathcal{L}_{rings} = \{0, 1, +, -, \times\}, \ \varphi(x) \colon \exists y(x = y^2)$$

$$\varphi(\mathbb{C}) = \mathbb{C}$$

$$\varphi(\mathbb{R}) = \mathbb{R}_{\geqslant 0}$$

$$\varphi(\mathbb{Q}_p) = \text{see Immi's talk}$$

$$\varphi(\mathbb{Z}) = \{0, 1, 4, 9, \ldots\}$$

Geometry of definable sets

Fix a language \mathcal{L} and a structure M.

Let D be the collection of definable sets in M. Then:

- Singletons are in D, graphs of relations and of functions of the language are in D, including the diagonal (graph of equality).
- D is closed under permutations of coordinates, finite intersections, finite unions, complement, cartesian product.
- *D* is closed under projection.

In fact, D is the smallest such.

If $\mathcal{L} = \mathcal{L}_{ring}$, then D contains exactly the boolean combinations of algebraic varieties (the constructible sets) and their projections.

Stop projecting

Fix a language \mathcal{L} and a structure M.

 ${\it M}$ 'eliminates quantifiers': every formula is equivalent to a formula without quantifiers.

Equivalently: definable sets are constructible.

Classical results:

- You just need to eliminate one quantifier.
- You can do things 'structurally': $\varphi(\overline{x})$ is equivalent to a quantifier-free formula iff anytime $N \equiv M$, anytime $\overline{a} \in M$ and $\overline{b} \in N$ are such that $\langle \overline{a} \rangle \simeq \langle \overline{b} \rangle$, then $M \vDash \varphi(\overline{a})$ iff $N \vDash \varphi(\overline{b})$.
- This is a notion relative to a language. You can always move to a larger language where M eliminates quantifiers.

Definable sets in \mathbb{C}

Tarski: \mathbb{C} eliminates quantifiers in \mathcal{L}_{rings} .

Example:

$$\exists y(x_ny^n+\cdots+x_0=0) \leftrightarrow x_0=0 \lor x_1\neq 0 \lor \cdots \lor x_n\neq 0.$$

Consequences:

- Chevalley's theorem: projections of constructible sets are constructible.
- Nullstellensatz: Any proper ideal of $\mathbb{C}[X_1,\ldots,X_n]$ has a common 0.
- Strong minimality: Definable sets in dimension 1 are finite or cofinite.

Definable sets in $\mathbb R$

The set of squares in \mathbb{R} (also known as $\mathbb{R}_{\geqslant 0}$) is definable but not constructible. Hence, \mathbb{R} does not eliminate quantifiers in \mathcal{L}_{rings} .

Tarski again: \mathbb{R} eliminates quantifiers in $\mathcal{L}_{\textit{orings}} = \{0, 1, +, -\times, <\}.$

Example:
$$\exists y(x_2y^2 + x_1y + x_0 = 0) \leftrightarrow (x_1^2 - 4x_2x_0 \ge 0)$$
.

Consequences:

– Hilbert 17: $f \in \mathbb{R}[X_1,\ldots,X_n]$ is a sum of squares iff $\forall a_1\ldots \forall a_n,\ f(a_1,\ldots,a_n)\geqslant 0.$

 o-minimality: Definable sets in dimension 1 are finite unions of intervals and points.

Definable sets in \mathbb{Q}_p

The set of squares in \mathbb{Q}_p is definable but not constructible. Hence, \mathbb{Q}_p does not eliminate quantifiers in \mathcal{L}_{rings} . The same is true for the set of cubes or of n-power.

Macintyre: \mathbb{Q}_p eliminates quantifiers in $\mathcal{L}_{Mac} = \{0, 1, +, -\times, (P_n)_{n \geq 2}\}$, where $P_n(x)$ holds iff $\exists y (x = y^n)$.

Note: \mathbb{Z}_p is a definable set: $x \in \mathbb{Z}_p$ iff $\exists y (1 + px^2 = y^2)$. We then have $\mathbb{Z} \simeq \mathbb{Q}_p^\times/\mathbb{Z}_p^\times$, that is, \mathbb{Z} is 'interpretable' in \mathbb{Q}_p .

Consequences:

- Definable sets in dimension 1 are finite (positive) Boolean combinations of P_n and points.
- Rationality results as explained by Immi: if $X \subseteq \mathbb{Z}_p^d \times \mathbb{Z}$ is definable, then $\sum_{m \geq 0} \mu(X_m) T^m$ is a rational function.
- \mathbb{Q}_p is model-complete and decidable.